Windenergieanlagen

Merkblatt für die Feuerwehren in Hinblick auf die brandschutztechnischen Einrichtungen und die Standard – Einsatz – Maßnahmen.

1 VORBEEMERKUNGEN .. 3

2 BEGREIFFSBESTIMMUNGEN ... 4

3 SCHUTZZIELE .. 7

4 ANLAGENARTEN - STANDORTE ... 7

4.1 Anlagenarten .. 7

4.2 Standorte .. 8

5 GEFAHREN- UND SCHADENSZENARIEN .. 8

5.1 Typische Schadenursachen ... 8

5.1.1 Brandschaden .. 8

5.1.2 Blitzschaden ... 8

5.1.3 Getriebeschaden .. 9

5.1.4 Transformatoren und weitere elektrische Anlagen .. 9

5.1.5 Rotorschaden .. 10

5.2 Gefahr durch Hochspannungskabel ... 10

6 ERFORDERLICHE SCHUTZMAßNAHMEN .. 10

6.1 Baulicher Brandschutz ... 10

6.1.1 Abstände .. 10

6.1.2 Brandabschnittsbildung ... 11

6.1.3 Rauchausbreitung, Rauchableitung .. 11

6.1.4 Brandverhalten von Baustoffen und Bauteilen ... 12

6.1.5 Flucht- und Rettungswege .. 12

6.1.6 Blitzschutz ... 14

6.1.7 Brandverhalten von Transformatoren ... 14
6.2 Betriebstechnischer Brandschutz ... 14
6.2.1 Brandfrüherkennung .. 14
6.2.2 Löschanlagen .. 15
6.2.3 Mittel der Ersten Löschhilfe ... 17
6.2.4 Löschwasserversorgung für WEA im Wald ... 17

6.3 Betrieblicher Brandschutz ... 17
6.3.1 Brandschutzorganisation .. 17
6.3.2 Informationen und Übungen .. 18
6.3.3 Alarm- und Einsatzplan .. 19
6.3.4 Eigenkontrollen und Veranlassung periodischer Überprüfungen .. 19

7 STANDARD - EINSATZ - MAßNAHMEN DER FEUERWEHR ... 20
7.1 Abschaltung von Hochspannungsnetzteilen ... 20
7.2 Kennzeichnung des Absperrbereiches im Waldbereich .. 21
7.3 Verhalten bei Brand einer WEA im Waldbereich .. 22
7.4 Verhalten bei Brand auf Freiflächen ... 23

8 LITERATUR / QUELLEN .. 23

9 ANHANG .. 25
1 Vorbemerkungen

Das vorliegende Merkblatt wurde vom Niederösterreichischen Landesfeuerwehrverband (NÖ LFV) in Zusammenarbeit mit der NÖ BV erarbeitet und dient der Information der NÖ Feuerwehren bei der Mitwirkung im Genehmigungsverfahren von Windenergieanlagen (WEA).

Weiters dient dieses Merkblatt als Grundlage für die Einsatzvorbereitung, die Erstellung von Alarmplänen und Einsatzunterlagen sowie der Einsatzdurchführung.

Genehmigt in der LFR Sitzung vom 21.08.2015.

Anwendungsbereich

Die Maßnahmen der Fremdrettung, der Gefahrenabwehr und der Schadensbegrenzung sind vom Windparkbetreiber zu organisieren und durchzuführen. Konkret betrifft das u.a. auch die Mitnahme von Selbstrettungsequipment durch Wartungspersonal sowie die jährliche Schulung des Personals zur Selbstrettung und dem Verhalten im Brandfall und bei Unfällen.

Dieses Merkblatt gilt grundsätzlich für Windenergieanlagen im Wald und an anderen Standorten sinngemäß.

2 Begriffsbestimmungen

Abschaltwindgeschwindigkeit

Die Abschaltgeschwindigkeit ist stark abhängig von Anlagentyp und Anlagenalter. Bei neuen Anlagen liegt die Abschaltgeschwindigkeit bei ca. 30 m/s. Die Anlagen regeln in diesem Bereich bei sehr hohen Windgeschwindigkeiten langsam ab, um sich dann vollständig aus dem Wind zu drehen.

Alarmplan

Enthält organisatorische und technische Maßnahmen, welche die Alarmierung und Benachrichtigung der inner- und außerbetrieblichen Stellen regeln, die der raschen und sachdienlichen Information von Einsatzkräften und Behörden dienen und die Durchführung der Abwehrmaßnahmen festlegen.

Aufbau einer Windenergieanlage

Abbildung 1: Aufbau einer Windenergieanlage
Quelle: VDE
Bei WEA kann der Transformator in der Gondel, im Turmfuß oder in einem eigenen Trafogebäude untergebracht sein.

Brandklassen von Trockentransformatoren gemäß IEC 60076-11

Zwei Brandklassen sind festgelegt:

Klasse F0: Es ist kein bestimmtes Brandrisiko zu berücksichtigen. Mit Ausnahme der durch die Bauart des Transformators vorhandenen Eigenschaften müssen zur Begrenzung der Brandgefahr keine besonderen Maßnahmen vorgesehen werden. Nichtsdestotrotz muss die Abgabe toxischer Stoffe und sichtbehindernden Rauchs auf ein Mindestmaß herabgesetzt sein.

Hinweis: Der Großteil der modernen WEA ist mit Transformatoren der Brandklasse F1 ausgestattet bzw. sind die Transformatoren, sofern keine Trockentransformatoren, in eigenen Brandabschnitten installiert. Bei Anlagen, bei denen die Bildung eines eigenen Brandabschnittes oder die Installation eines Trockentransformators nicht umsetzbar war bzw. umgesetzt wurde, befindet sich der Transformator nicht in der Anlage sondern im Anlagenumfeld (ähnlich einer Ortsnetztrafostation).

CMS - Condition Monitoring System

Ein CMS dient der Zustandsüberwachung einer Windenergieanlage, um Abweichungen vom normalen Betriebsverhalten frühzeitig erkennen und Ausfälle der Anlage vermeiden zu können.

Einsatzplan

Umfassender Plan für die Maßnahmen wie bei einem gefährdeten Objekt vorzugehen ist.

Gesamthöhe, Nabenhöhe

![Abbildung 2: Höhenangaben](image)

Stand: 24.08.2015

NÖ Landesfeuerwehrverband, Landesfeuerwehrkommando

Merkblatt „Wind Energie Anlagen WEA“
Gießharztransformator
Die Isolierung der Oberspannungswicklungen besteht aus schwer brennbarem Gießharz, in welchem kein Transformatoren Öl eingesetzt wird (daher auch die Bezeichnung Trockentransformator).

Inselbetrieb
Die Windkraftanlage ist nicht mit einem elektrischen Versorgungsnetz verbunden, sondern speist den / die angeschlossenen Verbraucher direkt.

Leerlauf
Betriebsbereiter Zustand einer WEA ohne Leistungsabgabe, bei dem sich der Rotor langsam dreht.

Maschine
Der auf dem Turm angeordnete maschinentechnische Teil der WEA. Hierzu zählen u.a. die Rotorblätter sowie die Nabe, die Welle, das Getriebe, die regelungs- und elektrotechnischen Komponenten, der Generator, die Lager und die Bremsen.

Nennleistung

Not-Aus
Das Not-Aus einer WEA löst eine Kaskade von Maßnahmen inklusive Benachrichtigung des Betreibers aus und bewirkt, dass nur der Rotor zum Stillstand kommt, jedoch NICHT, dass die Anlage selbsttätig vom Netz getrennt wird.

Repowering
Ältere Windenergieanlagen mit kleiner Leistung werden durch moderne, leistungsfähigere Anlagen ersetzt, um gute Standorte optimal nutzen zu können. Dies kann eine Erhöhung der Gesamtleistung bei gleichzeitiger Reduzierung der Anlagenanzahl bedeuten.

Turbulenzintensität
Die Turbulenzintensität ist ein Maß dafür, wie stark die Windgeschwindigkeit in einem Zeitintervall schwankt. Sie wird in die Turbulenzklassen A, B und C unterteilt und nimmt mit zunehmender Höhe und bei höheren Windgeschwindigkeiten ab.

Turm
Teil einer WEA oberhalb des Fundamentes, der die Maschine trägt, einschließlich eventueller Abspannungen
• Stahlturm: Turm bestehend aus einem oder mehreren Stahlrohrsegmenten
• Spannbetonturm: vorgespannter Ortbeton- oder Fertigteil­tur­m
• Hybrid­turm: Stahlbeton- oder Spannbetonturm mit aufgesetztem Stahlrohr­tur­m

Überstrichene Fläche
Projektionsfläche senkrecht zur Windrichtung, die ein Rotor bei einer vollständigen Drehbewegung beschreibt (zählt nicht zur Baugrundfläche).

Wald
Wald im Sinne des Österreichischen Forstgesetzes sind mit Holzgewächsen (forstlicher Bewuchs) bestückte Grundflächen, soweit die Bestockung mindestens eine Fläche von 1000 m² und eine durchschnittliche Breite von 10 m erreicht. Wald in diesem Sinne sind auch Grundflächen, deren forstlicher Bewuchs infolge Nutzung oder aus sonstigem Anlass vorübergehend vermindert oder beseitigt ist. Unbeschadet ihrer besonderen Nutzung gelten als Wald auch dauernd unbestockte Grundflächen, insoweit sie in einem unmittelbaren räumlichen und forstbetrieblichen Zusammenhang mit Wald stehen und unmittelbar dessen Bewirtschaftung dienen (wie forstliche Bringungsanlagen, Holzlagerplätze, Waldschneisen). (vgl., §1a Abs. 1-3 Forstgesetz 1975)

WEA - Windenergieanlage
Anlage, welche die kinetische Energie des Windes in elektrische Energie umwandelt.

3 Schutzziele
Die Schutzziele werden von der Brandgefahr, die von einer WEA ausgeht und ihrer Einwirkung auf die Umgebung betrachtet.

• Personenschutz
• Sicherheit der Einsatzkräfte
• Rettung des Fachpersonals
• Sachwertschutz im Brandfall
 o der WEA
 o der Umgebung (z.B. Wald)

4 Anlagenarten - Standorte

4.1 Anlagenarten

• Anlagen mit externer Trafostation neben dem Turm
• Anlagen mit integriertem Trafo
 o Anlagen mit integriertem Trockentrafo (F1) im Turmfuß
 o Anlagen mit integriertem Trockentrafo (F0) als eigener Brandabschnitt im Turmfuß
Merkblatt “Wind Energie Anlagen WEA”

o Anlagen mit ölgekühltem Trafo im Turmfuß als eigener Brandabschnitt
o Anlagen mit Trockentrafo (F1) in der Gondel

• Anlagen mit Getriebe und ohne Getriebe

4.2 Standorte

• WEA in bewaldeten Gebieten
• WEA in besonders exponierten Lagen
• WEA an anderen Standorten

5 Gefahren- und Schadenszenarien

5.1 Typische Schadenursachen

Im Einzelnen sind insbesondere folgende Schadenursachen hervorzuheben:

5.1.1 Brandschaden

5.1.2 Blitzschaden

Windenergieanlagen weisen aufgrund ihrer Höhe ein hohes Potenzial für Blitzesinschläge auf (s. auch Kapitel Blitzschutz). Die Rotorblätter sind i. d. R. mit Rezeptoren für Blitze ausgestattet, die in Verbindung mit metallischen Leitern, Schleifringen und/oder
Funkenstrecken einen Blitz kontrolliert abführen sollen. In der Praxis können Mängel an diesen Bauteilen durch fehlerhafte Montage und Wartung der Blitzschutzanlage auftreten. Schäden entstehen dann an Rotorblättern, Rotorblattlagern, an der Sensorik, elektronischen Schaltanlagen etc.

Insbesondere bei Windparks ist auch mit einem Blitzschaden z. B. an Telekommunikationsleitungen sowie elektrischen Einrichtungen, wie Transformatoren, zu rechnen.

5.1.3 Getriebeschaden

Teilweise sind Windenergieanlagen mit Getriebe ausgestattet, die sich in der Gondel zwischen Rotor und Generator befinden.

Die beschädigten mechanischen Bauteile (z. B. Lager) können durch Erwärmung zu einer Zündung benachbarter brennbarer Stoffe (z. B.: Öle, Fette) führen, was zu einer Brandausbreitung auf die umschließende Gondel führen kann.

5.1.4 Transformatoren und weitere elektrische Anlagen

Schäden an elektrischen Komponenten einer Windenergieanlage inkl. des zugehörigen Transformators unterscheiden sich in der Regel in ihrer Ursache qualitativ nicht von Schäden, wie sie in elektrischen Anlagen in anderen Anwendungsgebieten vorkommen.

Die beschädigten elektrischen Bauteile können durch Erwärmung bzw. Lichtbogenbildung zu einer Zündung benachbarter brennbarer Stoffe (z. B.: Kunststoffe als Abdeckungen, Isolierungen o. ä.) führen, was zu einer Brandausbreitung auf den betroffenen Schaltschrank sowie weiter auf die Umgebung (z. B. die Gondel, den Turm) führen kann.

5.1.5 Rotorschaden

Rotorschäden gehören mit zu den teuersten Schäden, die an einer Windenergieanlage auftreten können. Die hohe Zahl der Lastwechsel, die an einem Rotorblatt während der dimensionierten Lebensdauer auftreten, stellt höchste Anforderungen an:

- Den Blitzschutz: Schäden nach Blitzdurchgang sind eine Hauptschadenursache (siehe auch 5.1.2).
- Den Rotorblattschutz: Im Fall von Rotorblattvereisungen können bei entsprechenden Wetterbedingungen, wenn sich Eis von einem der Rotorblätter löst, hohe Unwuchten des Rotors entstehen, die zu Schäden am Rotor selbst sowie an weiteren Anlageteilen führen (z. B. Lagerschäden), die wiederum einen Brand verursachen können
- Die Konstruktion und Fertigung: Kleine Fehler können sich hier im Laufe des Betriebs vergrößern und schließlich zu einem hohen Schaden führen.
- Die Verschleißfestigkeit: Z. B. können durch Abrasion hervorgerufene mechanische Beschädigungen, die sich im Laufe des weiteren Betriebes ausbreiten, Schäden verursachen.

Der größte Schaden tritt bei Verlust des gesamten Rotors auf. Dieser kann z. B. aufgrund von Bremsversagen oder einer Unwucht eintreten.

5.2 Gefahr durch Hochspannungskabel

6 Erforderliche Schutzmaßnahmen

6.1 Baulicher Brandschutz

Der bauliche Brandschutz bei WEA wird durch nachstehende Punkte bestimmt:

6.1.1 Abstände

Die Errichtung einer WEA (Leistung >20 kW) bedingt in NÖ eine entsprechende Widmung des Bauplatzes/Aufstellungsplatzes („Grünland Windkraftanlage“). Gemäß den Bestimmungen des NÖ Raumordnungs gesetzes 1976 (§ 19 Abs. 3a Z.2) dürfen nur solche Flächen zu „Grünland Windkraftanlage“ umgewidmet werden, die zumindest 1200 m vom nächsten gewidmeten Wohnbauland bzw. 750 m von den nächsten landwirtschaftlichen Wohngebäuden, Kleingärten, Campingplätzen entfernt sind.
Zu öffentlichen Verkehrsflächen sind aufgrund des Eisabfalles darüber hinaus Abstände im Ausmaß von 1,2 x Gesamthöhe der WEA einzuhalten. Aus verschiedenen Materiengesetzen ergeben sich weitere Mindestabstände zu Versorgungseinrichtungen (Freileitungen, Gasleitungen, …) und Schutzgütern. Im Brandfall ist entsprechend den Betriebsanleitungen der Hersteller ein Gefahrenbereich im Radius von 500 m um die WEA abzusperren, d.h. der Gefahrenbereich erstreckt sich über eine Fläche von 79 ha. Die Absperrlinie (Umfang) ist theoretisch 3,14 km lang. Bei WEAs im Wald müsste im ungünstigsten Fall also ein Waldbrand dieses Ausmaßes angenommen werden.

Derartige Flächen stehen praktisch für eine Rodung nicht zur Verfügung. Es muss das Brandrisiko durch andere Maßnahmen, d.h. verschiedene bauliche, technische und organisatorische Maßnahmen reduziert werden. Es ist eine baum- und strauchfreie Zone im Radius der maximal zu erwartenden Wipfelhöhe des anstehenden Baumbewuchses um die WEA vorzusehen. Die Absicherungsmaßnahmen für den Gefahrenbereich im Brandfall sind für das Genehmigungsverfahren unter Berücksichtigung der Geländeverhältnisse festzulegen.

6.1.2 Brandabschnittsbildung

Anlagenintegrierte Transformatoren (Öltrafos oder Trockentransformatoren F0) müssen im Turmfuß in einem eigenen Brandabschnitt (EI 90/EI290-C) aufgestellt werden, sofern diese nicht der Brandklasse F1 zuzuordnen sind. Trockengießharztrafos der Brandklasse F1, welche entweder im Turmfuß oder der Gondel aufgestellt werden, sind i.d.R. durch verschiedene Einhausungen gegen Berühren von spannungsführenden Teilen geschützt. Diese Einhausungen weisen keine brandschutztechnische Qualifikation auf. Die Aufstellung dieser Tragos in einem eigenen Brandabschnitt ist aufgrund ihres Brandverhaltens nicht vorgesehen.

6.1.3 Rauchausbreitung, Rauchableitung

Die Druckentlastungskanäle der Mittelspannungsschaltanlagen (im Keller oder Bedienebene) sind so auszuführen, dass Rauch und heiße Gase ins Freie abgeleitet werden.

Zur Verbesserung der Fluchtbedingungen bei einem Brandereignis im Turm oder auf der Bedienebene ist die Einstiegsluke in die Gondel mit einem Rauchabschluss (z.B. textiler Abschluss) auszustatten.

6.1.4 Brandverhalten von Baustoffen und Bauteilen

Das Fundament und der Turm der WEA bestehen generell aus nichtbrennbaren Baustoffen (Beton und Stahl). Die Gondeleinhausung hingegen ist meist aus brennbaren Materialien (z.B: GFK) gefertigt.

Die wesentlichen Brandlasten stellen die verschiedenen Schmierstoffe, Kühlmittel und die elektrischen Komponenten, insbesondere die Kabelisolierungen dar.

Im Turm dürfen nur selbstverlöschende Hochspannungskabel gemäß EN 60332-1-2 eingesetzt werden.

6.1.5 Flucht- und Rettungswege

Der primäre Fluchtweg führt bei allen WEA durch den Turm nach unten auf die Bedienebene und von dieser ins Freie. Als sekundärer Fluchtweg stehen Abseilluk en in der Nabe und im Maschinenhausboden (Servicelu ke für Materialtransport) zur Verfügung. Bei einigen Anlagen besteht darüber hinaus die Möglichkeit sich zusätzlich vom Dach der Gondel über eine Reling oder feste Anschlagpunkte abzuseilen.

Der Turm und die Gondel sind mit einer USV versorgten Sicherheitsbeleuchtung ausgestattet.

Abbildung 3: Beispiel für Flucht- und Rettungsplan
Quelle: Repower
6.1.6 Blitzschutz

6.1.7 Brandverhalten von Transformatoren

Für eigene Trafostationen abseits der Windenergieanlagen sind bewuchsfreie Zonen zu schaffen, um im Falle eines Trafobrandes ein Übergreifen auf den Wald zu verhindern.

Für Transformatoren in keinem eigenen Brandabschnitt im Fuße der Windenergieanlagen, sind geprüfte und erprobte Löschsysteme vorzusehen.

Die Löschsysteme müssen selbsttätig wirksam werden, sodass ein Entstehungsbrand im Trafobereich gelöscht wird.

Zusammenfassend ist festzuhalten, dass der bauliche Brandschutz bei WEA nur begrenzt möglich ist und daher durch organisatorische und technische Maßnahmen kompensiert werden muss.

6.2 Betriebstechnischer Brandschutz

6.2.1 Brandfrüherkennung

Bei WEA sollten vorzugsweise Brandmelder mit der Kenngröße „Rauch“ zum Einsatz kommen. Im Bedarfsfall bzw. bei starker Feuchtigkeit sind zusätzlich Melderheizungen vorzusehen.

Die Alarmweiterleitung muss grundsätzlich an eine ständig besetzte Stelle des Betreibers (z.B. Schaltwarte) erfolgen.
Bei einer etwaigen zusätzlichen automatischen Alarmweiterleitung an die alarmannehmende Stelle der Feuerwehr (BAZ, LWZ) sind die Bestimmungen der TRVB 114 S einzuhalten.

Zur Sicherstellung der ständigen Betriebssicherheit ist die Brandmeldeanlage auch hinsichtlich Störungen zu überwachen und sind diese an die ständig besetzte Stelle weiterzuleiten.

Die Installation eines Feuerwehrbedienfeldes und Schlüsselsafe kann grundsätzlich entfallen.
Die ordnungsgemäße Ausführung und Funktion der Brandmeldeanlage ist durch ein Installationsattest zu bestätigen.
Abweichend von den Bestimmungen der TRVB 123 S darf die jährliche vorgesehen Wartung/Instandhaltung von geeigneten, fachlich unterwiesenen Personen - auch betriebsinternem Personal auf Grundlage der ÖNORM F 3070 - durchgeführt werden.

6.2.2 Löschanlagen

Pulverlöschanlagen und Aerosollöschanlagen sind grundsätzlich für den Einsatz in WEA nicht geeignet.

Bei Auslösung einer Löschanlage ist eine ständig besetzte Stelle (Betreiber) zu alarmieren. Zur Sicherstellung der ständigen Betriebssicherheit ist die Löschanlage auch hinsichtlich Störungen zu überwachen und sind diese an die ständig besetzte Stelle weiterzuleiten.

Bei Arbeiten in der WEA sind die Löschanlagen außer Betrieb zu nehmen und entsprechende Ersatzmaßnahmen vorzusehen.
Folgende Löschanlagen sind grundsätzlich für den Einsatz in WEA geeignet:
- CO₂-Löschanlagen gem. TRVB 140 S
- Automatische Löschanlagen - Gasförmige Löschmodell (Inertgas) gem. TRVB 152 S
- Wassernebellöschanlagen gem. TRVB 146 S (geplant) bzw. ÖNORM CEN/TS 14972 oder VDS 2498 in Verbindung mit VDS 2109
- Sprühwasser-Löschanlagen gem. TRVB 147 S (geplant) bzw. ÖBFV-RL VB 05 oder VDS 2109
- Sprinkleranlagen gem. TRVB 127 S in Verbindung mit der ÖNORM EN 12845
- Ortsfeste Brandbekämpfungsanlagen - Schaumlöschanlagen gem. ÖNORM EN 13565-2

Die ordnungsgemäße Ausführung und Funktion der Löschanlage ist durch ein Installationsattest zu bestätigen.
Abweichend von den Bestimmungen der Installationsrichtlinien darf die jährliche vorgesehene Wartung/Instandhaltung von geeigneten, fachlich unterwiesenen Personen - auch betriebsinternem Personal auf Grundlage der ÖNORM F 307x - durchgeführt werden.

Folgende Löschanlagen sind geeignet:

<table>
<thead>
<tr>
<th>Löschanlage</th>
<th>Gaslöschanlage</th>
<th>Wasserlöschanlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO₂</td>
<td>Inertgas</td>
</tr>
<tr>
<td>Gondel mit Generator, Trafo, Hydraulik, Getriebe, Bremse</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nabe mit Pitch-Antrieb und evtl. mit Generator</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zwischenböden mit Ölauffangwanne und Kabel und Elektroinstallation</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Zentrale Umspannstation, Schaltanlagenräume (ohne Trafo)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Turmfuss/-plattform mit ggf. vorhandenen Installationen</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Steuer-,Umrichter- und Schaltchränke geschlossen (NS,HS)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Transformer</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Steuer-,Umrichter- und Schaltchränke offen (NS,HS)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hydrauliksystem</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+..... geeignet -..... nicht geeignet
Hinweis: Beim Einsatz von Wasserschlaganlagen müssen gefahrbringende spannungsführende Teile vor Beginn des Löschvorganges spannungsfrei geschaltet werden.

Sofern durch entsprechende Löschversuche (entsprechende Versuchsanordnung inkl. der zu erwartenden Umgebungsbedingungen) eine Gleichwertigkeit zu den o.a. Anlagen gegeben ist, können auch derartig erprobte Lüschesysteme Anwendung finden. Diesbezüglich ist eine akkreditierte Prüfstelle miteinzubeziehen.

6.2.3 Mittel der Ersten Lüschehilfe

Zur Bekämpfung von Entstehungsbränden sind geeignete Mittel der ersten Lüschehilfe bereitzuhalten.

Die Dimensionierung hat sinngemäß der TRVB F 124 zu entsprechen.

Der Einsatz von Pulverléscher ist nicht zu empfehlen.

Für die Gondel ist mindestens ein 5kg CO2 –Feuerlöscher (K5) und ein 9 Liter frostssicherer Schaumléscher (S9) für den nicht spannungsführenden Teil bereitzuhalten.

Auf der Bedienebene im Turmfß im Bereich der elektrischen Einrichtungen ist mindestens ein weiterer 5kg CO2 Feuerlöscher (K5) vorzusehen.

Die Standorte der Feuerlöscher sind gem. Kennzeichnungsverordnung bzw. ÖNORM EN ISO 7010 zu kennzeichnen.

6.2.4 Lüschwasserversorgung für WEA im Wald

Nachdem eine Brandbekämpfung erst außerhalb des Absperrbereiches durchgeführt werden darf, ist eine Lüschwasserversorgung zu errichten. Es ist grundsätzlich eine erforderliche Lüschwasserrate von 800l/min für eine Entnahmedauer von zwei Stunden vorzusehen. Der Lüschwasservorrat hat folglich mind. 100m³ zu betragen und ist auf zwei gedeckte, mit einer Füllstandüberwachung versehene Lüschwasserentnahmestellen (Zisternen, a= mind. 50m³) aufzuteilen, deren Abstand grundsätzlich 500m zur WEA (Anmerkung: entspricht dem Absperrradius) betragen sollte. Sind diese Abstände in einem Windpark nicht zu gewährleisten, sind weitere Entnahmestellen mit jeweils mind. 50m³ zu errichten. Für die Befüllung sowie die jederzeitige Benutzbarkeit ist der Betreiber der WEA bzw. des Windparks verantwortlich. Sämtliche Lüschwasserentnahmestellen sind gemäß ÖBFV-RL VB-01 auszuführen und im Einvernehmen mit der örtlich zuständigen Feuerwehr unter Beachtung der Hauptwindrichtung möglichst zentral im Windpark, jedoch außerhalb des Trümmerschattens von WEA zu situieren. Wird das Lüschwasser aus offenen Gewässern oder Brunnen entnommen, so hat die Ergiebigkeit mind. 500l/min pro Entnahmestelle zu betragen.

6.3 Betrieblicher Brandschutz

6.3.1 Brandschutzorganisation

Der Windparkbetreiber hat die technischen Voraussetzungen zu schaffen und Anweisungen zu erlassen, die sicherstellen, dass im Brandfall die WEA in einen sicheren
Zustand überführt wird und die zur Hilfeleistung erforderlichen Maßnahmen ohne Verzögerung eingeleitet werden.

Für die Organisation der erforderlichen Brandschutzmaßnahmen ist ein Brandschutzbeauftragter zu bestellen und gemäß TRVB O 117 aus- und fortzubilden. Der Brandschutzbeauftragte und dessen Erreichbarkeit sind der örtlich zuständigen Alarmzentrale der Feuerwehr und der örtlich zuständigen Feuerwehr bekannt zu geben.

Für den Betrieb ist eine Brandschutzordnung zu erstellen, in der die notwendigen Vorkehrungen und durchzuführenden Maßnahmen zur Brandverhütung und Brandbekämpfung in technischer und organisatorischer Hinsicht geregelt und festgehalten sind. Der Inhalt ist nachweislich allen in den WEA eingesetzten Personen zur Kenntnis zu bringen. Im Eingangsbereich der WEA ist ein Anschlagblatt über das Verhalten im Brandfall anzubringen.

Sind brandgefährliche Arbeiten in Zusammenhang mit Reparatur-, Montage- und Demontagearbeiten erforderlich, sind vor, während und nach der Arbeit Brandschutzmaßnahmen zu ergreifen, um eine Brandentstehung zu vermeiden oder einen Brand frühzeitig zu erkennen und wirksam zu bekämpfen. Sollte es erforderlich sein, die Brandmelde- bzw. die Löschanlagen außer Betrieb zu nehmen, so hat dies in Abstimmung mit den hierfür verantwortlichen Personen zu erfolgen. Für die Zeit der Außerbetriebnahme sind ausreichende Ersatzmaßnahmen vorzusehen, wie beispielsweise die Sicherstellung der Brandmeldung oder die Bereithaltung geeigneter Löschgeräte. Für die Durchführung solcher Arbeiten sind die Bestimmungen der prTRVB 104 (z.B. Freigabeschein) zu berücksichtigen.

6.3.2 Informationen und Übungen

Es hat vor der Inbetriebnahme eine Information an die hilfeleistenden Feuerwehren entsprechend dem Alarmplan über die vorhandenen Sicherheits- und Brandschutzeinrichtungen sowie die Vermittlung entsprechender Orts- und Gefahrenkenntnisse zu erfolgen. Der Alarmplan ist im Rahmen einer Übung zu prüfen.

Der Windparkbetreiber hat mindestens einmal jährlich eine Übung unter Einbeziehung aller für einen Einsatz vorgesehenen Einsatzorganisationen durchzuführen. Diese sind über die Art der Anlagen, die Einweisung vor Ort und den Umgang mit den Gefahren bei der Brandbekämpfung (Freischaltung, Betreten der Anlage, Gefährdungsbereich, Feuerwiderstandsdauer, Gefahr herabstürzender Teile usw.) durch Fachpersonal des Betreibers zu informieren.

6.3.3 Alarm- und Einsatzplan

In Zusammenarbeit mit den Einsatzkräften hat der Windparkbetreiber einen Alarm- und Einsatzplan zu erstellen. Die Alarmpläne haben in jedem Fall festzulegen bzw. zu beinhalten:

- die Zufahrt zu den einzelnen Windenergieanlagen des Windparks
- Angabe der vorgesehenen Einsatzfahrzeuge
- Sofortmaßnahmen des Windparkbetreibers bei verschiedenen Ereignissen (z.B. Trennung der WEA vom Stromnetz bei einer Brandmeldung)
- die Festlegung der Nachrichtenverbindungen

Der Windparkbetreiber hat die Alarm- und Gefahrenabwehrpläne und Einsatzunterlagen sowie einen Brandschutzplan entsprechend der TRVB 121 den Einsatzorganisationen zur Verfügung zu stellen.

Diese Pläne und Einsatzunterlagen haben zumindest folgendes zu beinhalten:

- Ausschnitt aus der ÖK 1:50.000, mit:
 - WEA mit Nummerierung
 - benachbarte WEA und Windparks
 - Zufahrtswege für Einsatzfahrzeuge ab den umliegenden Hauptverkehrsstraßen
 - Absperrbereiche bei Brand einer WEA
 - einsatzrelevanten Höhenangaben
- Informationen für die Feuerwehr bei möglichen Brandereignissen (Brand in der Gondel, Trafobrand, usw.)
- Fluchtmöglichkeiten aus der WEA, Leitern, Stiegen, usw.
- Selbstrettungsmöglichkeiten von Personen aus der WEA
- Lage und Art der Feuerlöscher
- Brandmelde- und Löschanlagen
- Löschwasserversorgungsanlagen
- Koordinaten der einzelnen WEA (WGS84)
- Verantwortliche Personen bzw. ständig besetzte Zentrale des WEA-Betreibers mit deren Erreichbarkeiten

Diese Unterlagen sind den hilfeleistenden Feuerwehren lt. Alarmplan in schriftlicher und elektronischer Form (pdf-Format) zu übermitteln.

6.3.4 Eigenkontrollen und Veranlassung periodischer Überprüfungen

Durch die Eigenkontrollen des Brandschutzbeauftragten sollen Mängel zeitgerecht erkannt und behoben werden. Die Eigenkontrolle ist nach einem Kontrollplan vorzunehmen. Das Ergebnis der Kontrollen und die getroffenen Maßnahmen zur Mängelbehebung sind im
Brandschutzbuch festzuhalten. Im Übrigen ist die Eigenkontrolle nach den Grundsätzen der TRVB O 120 zu organisieren und nachweislich durchzuführen.

7 Standard - Einsatz - Maßnahmen der Feuerwehr

Die Feuerwehr kann sich lediglich auf die Absicherung und auf die Einschränkung der Ausbreitung von Folgebränden am Boden unter Berücksichtigung des Gefahrenbereiches (Trümmerschatten in Abhängigkeit von der Windrichtung) beschränken.

Das Ziel der Brandbekämpfung ist es, die Ausdehnung des Brandes einzuschränken und den vom Brand erfassten Bereich möglichst abzulösen.

Eine Verbreitung brennender Teile und Flüssigkeiten in die Umgebung, wie z.B. auf Wiesen und Felder, in den Wald und auf Baumkronen, ist nicht auszuschließen.

Bei den einsatztaktischen Maßnahmen gilt es zu unterscheiden, an welchem Standort eine WEA errichtet ist.

Bei WEA hat der Sicherheitsabstand in der Anfangsphase grundsätzlich mindestens 500 m zu betragen.

Bei Brandeinsätzen mit starkem Wind kann es erforderlich sein, den Sicherheitsabstand in Richtung der Windströmung zu vergrößern.

7.1 Abschaltung von Hochspannungsnetzteilen

Prinzipiell hält sich ein EVU (Elektroversorgungsunternehmen) an die gesetzlich vorgegebenen Bestimmungen im Sinne des Elektrotechnikgesetzes, wobei für Schalthandlungen die EN 50110 anzuwenden ist. Konkret bedeutet dies, dass eine Freigabe eines abgeschalteten Netzteiles nie fernmündlich ausgesprochen wird, sondern unter Beachtung der fünf Regeln der EN 50110 eine Freigabe nur vor Ort erfolgt. Im Falle eines WEA-Brandes kann zwar in der Übergabestelle oder im vorgeschalteten Umspannwerk der jeweilige Abzweig, der zum betroffenen Windpark führt, durch Fernbedienung abgeschaltet werden. Es erfolgt jedoch niemals eine Freigabe aus der Netzzentrale des EVUs. Für eine Freigabe muss ein Mitarbeiter des EVUs aus der
nächstgelegenen Dienststelle (Störungsdienst) verständigt werden, der für diesen Einsatzfall an die Schaltstelle ausrückt und die noch erforderlichen Maßnahmen wie "Sichern gegen Wiedereinschalten", "Spannungsfreiheit prüfen" und "Erder einlegen" setzen wird. Erst danach kann eine Freigabe erfolgen, die jedoch nur für die abgeschaltete Leitung und nicht für die Einsatzstelle (Brandbekämpfung bei der WEA) gilt. An der betroffenen Einsatzstelle der elektrischen Anlage muss eine Erdungsgarnitur zusätzlich angebracht werden, um allfällige auftretende Spannungen durch Einkopplungen zu verhindern.

In den Schaltanlagen, die zum Einspeisennetz des Windenergieanlagenbetreibers zählen, wird das EVU keine Schalthandlungen vornehmen. Für diese speziellen Abschaltungen (z.B. Auskopplung einer einzelnen WEA aus einem Hochspannungsnetz) muss demzufolge der Anlagenverantwortliche des Windparks alarmiert werden, um die erforderlichen Schalthandlungen durchzuführen.

In die Praxis umgesetzt, bedeutet dies, dass erst mit einem Löscheinsatz direkt am Brandherd, wo Hochspannung zu erwarten ist, möglicherweise erst nach Stunden begonnen werden kann, wodurch der eigentlichen Zielvorgabe einer raschen Brandbekämpfung nicht gefolgt werden kann (ähnlich verhältnis sich bei Einsatzfällen auf elektrifizierten Bahnstrecken).

Aus den genannten Gründen kann somit eine Brandbekämpfung in Bezug auf elektrotechnische Sicherheit nur unter Beachtung der ÖVE/ÖNORM E 8350 erfolgen, wonin die erforderlichen Abstände für die Brandbekämpfung unter spannungsführenden Anlagenteilen angegeben sind.

7.2 Kennzeichnung des Absperrbereiches im Waldbereich

Es ist zunächst ein Bereitstellungsraum für die Einsatzkräfte für jeden Windpark außerhalb des Absperrbereiches festzulegen. Nach der Erkundung ist für die betroffene WEA ein Absperrradius von 500m für das Wegenetz im Bereich der WEA festzulegen. In Richtung der Windströmung kann es erforderlich sein, den Absperrradius bis zu 1000m zu erweitern. Warndurchsagen mittels Megaphon und Lautsprecheranlagen mit der Aufforderung, den Absperrbereich zu verlassen, sind durchzuführen.

Bei den WEA sind geeignete Warneinrichtungen (z.B. Sirenen, Blinklichter) zu installieren und im Gefahrenfall durch die Windpark-Leitstelle zu aktivieren, um die im Gefahrenbereich befindlichen Personen (Sportler, Wanderer, usw.) zu warnen. Die Warneinrichtungen müssen auch bei Ausfall des normalen Stromnetzes mind. 1 Stunde funktionsfähig bleiben.

Zufahrten und Zugänge, die in den Absperrbereich führen (Wege im Umkreis von ca. 500m von der jeweiligen WEA) sind mit entsprechenden Warnschildern gemäß ÖNORM F 2030 auszustatten, welche auf die Gefahren und Warnsignale hinweisen sowie Verhaltensregeln geben.
In welcher Art und Form die dauerhafte und gut sichtbare Kennzeichnung der Absperrpunkte vor Ort erfolgt, ist im Einvernehmen mit der örtlich zuständigen Feuerwehr festzulegen.

7.3 Verhalten bei Brand einer WEA im Waldbereich

- Es ist grundsätzlich gemäß den Alarm- und Gefahrenabwehrplänen (Einsatzplan) vorzugehen.
- Sofern nicht bereits in der Alarmierung mitgeteilt, ist die betroffene WEA mittels Rücksprache mit dem Betreiber via BAZ / LWZ zu ermitteln. Diese Information ist an alle alarmierten Einsatzkräfte durch den Einsatzleiter während der Anfahrt zu übermitteln.
- Es sind die definierten Absperrpositionen auf den Zufahrten der betroffenen WEA zu beziehen. Abhängig von der Richtung der Windströmung und -stärke können die Absperrpositionen zurückverlegt werden, d. h. in einem größeren Sicherheitsabstand als 500 m zur betroffenen WEA bzw. Windpark erfolgen.
- Das Eintreffen eines Vertreters des Betreibers bei der festgelegten Hauptzufahrt (Treffpunkt lt. Einsatzplan) ist abzuwarten, um die weitere Vorgehensweise zu besprechen und weitere Informationen einzuholen. Danach ist eine Erkundung und Lagefeststellung durchzuführen.
- Im Absperrbereich angetroffene Personen (z. B. Spaziergänger, Sportler, Jäger) sind aufzufordern, den Bereich sofort zu verlassen.
- Im Falle eines Brandes im unteren Turmteil / Turmfuß bzw. neben der WEA befindlichen Gebäuden (z. B. Trafostation / Übergabestation) können Löschmaßnahmen durchgeführt werden, wobei jedoch die Sicherheitsbestimmungen und die Mindestabstände beim Löschen in elektrischen Anlagen zu berücksichtigen sind. Es dürften sich jedoch nur die dazu notwendigen Feuerwehkräfte der WEA nähern; die sonstigen Kräfte verbleiben im Bereitstellungsraum. In diesem Fall ist von einer geringen Waldbrandgefährdung auszugehen. Sollten weitere Kräfte im Bereich der WEA notwendig sein (z. B. zur Löschwasserbereitstellung bzw. Sicherung des an die WEA angrenzenden Waldes), sind diese entsprechend dem Bedarf aus dem Bereitstellungsraum nachzuziehen.
- Im Falle eines Brandes am oberen Ende des Turms, im Maschinenhaus / der Gondel bzw. der Rotorblätter hat die Feuerwehr keine Möglichkeit der Brandbekämpfung mit ihren Mitteln. Es verbleibt daher nur die Option des kontrollierten Abbrandes übrig, wobei der Sicherheitsabstand als Mindestabstand

7.4 Verhalten bei Brand auf Freiflächen

Die Maßnahmen gemäß 7.3 gelten sinngemäß.

(z.B. durch den Anlagenbetreiber, Polizei, Feuerwehr)(wenn vorhanden)

8 Literatur / Quellen

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>KennV</td>
<td>Kennzeichnungsverordnung BGBl. II Nr. 101/1997</td>
</tr>
<tr>
<td>NÖ ROG 1976</td>
<td>NÖ Raumordnungsgesetzes 1976, LGBI. 8000–24</td>
</tr>
<tr>
<td>IEC 60076-11</td>
<td>Power transformers - Part 11: Dry-type transformers (Leistungstransformatoren - Teil 11: Trockentransformatoren)</td>
</tr>
<tr>
<td>ÖBFV-RL VB-01</td>
<td>Die Löschwasserversorgung</td>
</tr>
<tr>
<td>ÖBFV-RL VB 05</td>
<td>Löschmittelbedarf in Betriebsanlagen</td>
</tr>
<tr>
<td>ÖNORM F 2030</td>
<td>Kennzeichen für den Brandschutz-Anforderungen, Ausführungen, Verwendung und Anbringung</td>
</tr>
<tr>
<td>ÖNORM F 3070</td>
<td>Instandhaltung von Brandmeldeanlagen und Brandfallsteuerungen</td>
</tr>
<tr>
<td>ÖNORM F 3071</td>
<td>Planung, Projektierung, Installation, Inbetriebnahme und Instandhaltung von Gaslöschanlagen</td>
</tr>
<tr>
<td>ÖNORM F 3072</td>
<td>Planung, Projektierung, Installation, Inbetriebnahme und Instandhaltung von Wasserlöschanlagen</td>
</tr>
<tr>
<td>ÖNORM F 3073</td>
<td>Planung, Projektierung, Montage, Inbetriebnahme und Instandhaltung von Sauerstoff-Reduzieranlagen (SRA)</td>
</tr>
<tr>
<td>ÖNORM F 3074</td>
<td>Planung, Projektierung, Installation, Inbetriebnahme und Instandhaltung von Elektroakustischen Notfallsystemen</td>
</tr>
<tr>
<td>ÖNORM F 3076</td>
<td>Projektierung, Installation, Inbetriebnahme und Instandhaltung von Alarmübertragungssystemen</td>
</tr>
<tr>
<td>Norm/Zeichnung</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ÖNORM EN 12845</td>
<td>Ortsfeste Brandbekämpfungsanlagen - Automatische Sprinkleranlagen - Planung, Installation und Instandhaltung</td>
</tr>
<tr>
<td>ÖNORM EN 13565-2</td>
<td>Ortsfeste Brandbekämpfungsanlagen - Schaumlöschanlagen - Teil 2: Planung, Einbau und Wartung (konsolidierte Fassung)</td>
</tr>
<tr>
<td>ÖNORM EN ISO 7010</td>
<td>Graphische Symbole - Sicherheitsfarben und Sicherheitssymbole - Registrierte Sicherheitssymbole (ISO 7010:2011)</td>
</tr>
<tr>
<td>ONR CEN/TS 14972</td>
<td>Ortsfeste Brandbekämpfungsanlagen - Feinsprühlöschanlagen - Planung und Einbau (CEN/TS 14972:2011)</td>
</tr>
<tr>
<td>ÖVE/ÖNORM E 8350</td>
<td>Bekämpfung von Bränden in elektrischen Anlagen und in deren Nähe</td>
</tr>
<tr>
<td>ÖVE/ÖNORM E 8383</td>
<td>Starkstromanlagen mit Nennwechselspannung über 1 kV</td>
</tr>
<tr>
<td>ÖVE/ÖNORM EN 50110</td>
<td>Betrieb von elektrischen Anlagen</td>
</tr>
<tr>
<td>ÖVE/ÖNORM EN 60076-11</td>
<td>Leistungstransformatoren - Teil 11: Trockentransformatoren</td>
</tr>
<tr>
<td>ÖVE/ÖNORM EN 60332-1-2</td>
<td>Prüfungen an Kabeln, isolierten Leitungen und Glasfaserkabeln im Brandfall - Teil 1-2: Prüfung der vertikalen Flammenausbreitung an einer Ader, einer isolierten Leitung oder einem Kabel - Prüfverfahren mit 1-kW-Flamme mit Gas/Luft-Gemisch</td>
</tr>
<tr>
<td>ÖVE/ÖNORM EN 62305-3</td>
<td>Blitzschutz - Teil 3: Schutz von baulichen Anlagen und Personen</td>
</tr>
<tr>
<td>ÖVE-Richtlinie R12-1</td>
<td>Brandschutz in elektrischen Anlagen - Teil 1: Ergänzende Brandschutzanforderungen an Transformatorstationen, Kompakt-Transformatorstationen und an Räume mit elektrischen Schaltanlagen</td>
</tr>
<tr>
<td>prTRVB 104 O 14</td>
<td>Brandgefahren beim Schweißen, Schneiden, Löten und anderen Feuerarbeiten</td>
</tr>
<tr>
<td>TRVB 114 S 13</td>
<td>Anschaltbedingungen automatischer Brandmeldeanlagen an die öffentlichen Feuerwehren</td>
</tr>
<tr>
<td>TRVB O 117 06</td>
<td>Ausgabe 2010, Betrieblicher Brandschutz – Ausbildung</td>
</tr>
<tr>
<td>TRVB O 120 06</td>
<td>Betriebsbrandschutz – Eigenkontrolle</td>
</tr>
<tr>
<td>TRVB 121 14</td>
<td>Brandschutzpläne</td>
</tr>
<tr>
<td>TRVB 123 S 11</td>
<td>Ausgabe 2013, Automatische Brandmeldeanlagen</td>
</tr>
<tr>
<td>TRVB F 124 97</td>
<td>Erste und Erweiterte Löschhilfe in Überarbeitung</td>
</tr>
<tr>
<td>TRVB 127 S 11</td>
<td>Sprinkleranlagen (SPA) und Erweiterte Automatische Löschhilfeanlagen (EAL)</td>
</tr>
<tr>
<td>TRVB S 140 84</td>
<td>CO2 – Löschanlage (Anmerkung: wird mit Erscheinen der TRVB 152 S 15 aufgehoben)</td>
</tr>
<tr>
<td>TRVB S 146</td>
<td>Wassernebellöschanlagen (Anmerkung: geplant)</td>
</tr>
<tr>
<td>TRVB S 147</td>
<td>Wassersprühflutanlagen (Anmerkung: geplant)</td>
</tr>
<tr>
<td>TRVB S 151 94</td>
<td>Brandfallsteuerungen</td>
</tr>
<tr>
<td>TRVB S 152 96</td>
<td>Automatische Löschanlagen - Gasförmige Sonderlöschmittel</td>
</tr>
<tr>
<td>VDS 2109</td>
<td>Richtlinien für Sprühwasser-Löschanlagen - Planung und Einbau</td>
</tr>
</tbody>
</table>
BILDQUELLEN

REPOWER: Dokumenten - Nr.: Z-3.1-GP.GK.01-A-B

9 Anhang

- Standard-Einsatz-Maßnahmen der Feuerwehr beim Brand einer Windenergieanlage
- Musterformular – Alarm- und Einsatzplan
- Standardformular – Alarm- und Einsatzplan